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Preface

This report documents the theory behind the CSM Testbed structural finite element pro-
cessor ES6 for the STAGS beam element. The CSM Testbed is described in reference

.

This report is intended both for CSM Testbed users, who would like theoretical background

on element types before selecting them for an analysis, as well as for element researchers

who are attempting to improve existing elements or to develop entirely new formulations.
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1. GENERAL DESCRIPTION

1.1 Purpose

Processor ES6 contains the displacement-based 2-node beam element used within the

STAGS code (ref. 2). This element is intended for modeling slender beams, which ap-

pear either in frame structures or as stiffening elements for shell structures. In STAGS,
the element is referred to as the 210 element; in CSM Testbed processor ES6, it is called

element E210. The E210 element in ES6 is a two-node straight beam element with 3 trans-

lational and 3 rotational freedoms per node. It thus represents a faceted approximation

when used to model curved structures. The element features a cubic transverse (bend-

ing) displacement field, and linear axial and torsional displacement fields. Hence, it is

considered compatible as a stiffener element with the STAGS-410 shell element, which is

implemented as element E410 in CSM Testbed processor ES5. Note that the E210 beam

element does not model warping deformations due to torsion, but does have a limited

transverse-shear deformation capability (described in Section 2.13).

Arbitrarily large rotations (but only small strains) may be modeled with the E210 beam

elements by employing the standard corotational utility available for all ES processors.

1.2 Background

Processor ES6 was developed by Frank Brogan and Shahram Nour-Omid of the Lockheed

Palo Alto Research Laboratory (LPARL). The E210 element was originally developed for

the STAGS code by Gary Stanley of LPARL, and recently transferred to the CSM Testbed

as processor ES6, by the above authors, under the sponsorship of the NASA CSM Program.

1.3 Specific Element Types

Processor ES6 contains only one element type, the E210 beam element, which is equivalent

to the 210 element within the STAGS code. For quick reference, a brief description of the

ES6/E210 beam element is presented in Table 1, and an element fact sheet is provided in

Table 2.

I
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In Table 2 the following definitions apply:

NEN - number of element nodes

NIP - number of integration points

NSTR - number of stresses

NDOF - number of nodal degrees of freedom

Type

E210

Table 1. Summary of Processor ES6 Element Types

Description

2-node straight C a beam element. This is the same element available in

the STAGS finite element code (where it is called the 210 element). It is
recommended for general frame structures_ or as a shell-stiffener element
which can be used in conjunction with the E410 shell element in processor
ES5.
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Table 2. Element ES6/E210 Fact Sheet

Attribute Description

Element Type 2-Node C 1 Straight Beam Element

Developers F.A. Brogan, G. M. Stanley & S. Nour-Omid (LPARL)

Top ology

NEN=2

NIP--2

NSTR--4

NDOF--6

Intended Use Slender beams and shell-stiffeners

Variational Basis Assumed displacements (Total Potential Energy)

Geometric Approx. Straight span; normal cross-sections

Displacement Approx. Cubic transverse (Y,_); Linear axial (_,a)

Strain Approximation

= {_=,_,_z,_} T

Stress Approximation

_': {N=,M_,I_z,T} T

Force Vectors

Stiffness Matrices

Mass Matrices

(a= 1,2)

toy,fez "_ pl(x)

Using constitutive relations, e.g.,

_(_) = c(_)_(_)

fei,_t = L, E_=I wgBT(zg)_(Zg)2

--T

fist = _..E_=I WgND(Zg)(?b(zgl+Tt(Zg))

Ky aa = L2 E_=l wgBT(zg)C(zg)B(zg)

ggeo_ _ E_=__g N=(_IG_(=_IG(=_)e _--- 2

M_ r__ _2g=1WgND(Zg)Z(Xg ) -T-- ND(Xg )-- 2

M_ = diag{(_,I3,_,I3),(g213,_I3)}

Nonlinearity Lagrange strains and/or corotation

Pathologies None

Recommended Use General-purpose applications



2. ELEMENT FORMULATION

2.1 Summary

The E210 element is a two-node beam dement that features Hermitian-cubic interpolation

of transverse displacements, and linear interpolation of the axial displacement and twist.

The beam element is based on Bernoulli-Euler beam theory, and thus satisfies the C 1

continuity requirement, i.e., first derivatives of the transverse displacements are continuous

across element boundaries - for straight beam segments. Note that while transverse-shear

deformations due to transverse forces are not accounted for in the basic formulation*,

transverse-shear strains and stresses due to torsion are included - albeit without cross-

sectional warping effects.

2.2 Variational Basis

The E210 element can be derived by starting with the principle of minimum total potential

energy, wherein the displacements are the only independently approximated field.

2.2.1 Continuum Equations

|::

The principle of minimum total potential energy states that:

gIIT(U) = 0 (1)

where, for linear elastic analysis, liT is the total potential energy functional:

1/v e(u)TCe(u)dV - (Iv uTfbdV+ _s uTfsdS) (2)nr(u) =

in which x is the position vector, u(x) is the displacement vector, fb(x) and f'(x) are

body and surface force vectors, C(x) is the constitutive matrix, and the strain operator,

e(u), is defined for linear analysis by:

l(vu +(Vu)T) !(°u 0u_(u) = _ = 2,0x+(_) ) (3)

which in vector notation and Cartesian components is defined as:

We have assumed (for the time being) that the stress tensor is related to the strain tensor

by

= c _ (5)

* See Section 2.13 for a description of a limited transverse-shear deformation capability.



where in vector notation and Cartesian components:

0" : {O"11 0"22 O"12 O"31 0"32 0"33} T (6)

2.2.2 Beam Assumptions

The geometry of a generally curved beam in space is illustrated in Figure 1; the E210

element formulation is based upon the projection of the general curve onto a straight seg-

ment (see figure). The following assumptions are introduced into the continuum variational

equations to obtain corresponding "beam" variational equations - and hence reduce the

above volume integrals to line integrals:

1) Plane sections remain plane and normal to the beam neutral axis.

2) Beam transverse-normal stresses (_r_,azz) and lateral-shear stresses (_ry_)

can be neglected.

Thus, the displacement field for a generic point in the beam may be decomposed into

translational and rotational components as follows:

(7)

where z is the axial coordinate, y and z are the cross-section coordinates, u, v, w are the

displacements (translations) in the z,y,z directions at the beam reference axis, and 8_,

8_, 8z are the rotations of the cross-section about the z_y_ z axes, respectively. (The sign

convention for rotations follows the right-hand rule.)



Figure 1. Beam Geometry Used in ES6/E210 Element Formulation



Note that the "plane-sections remain normal" assumption engenders the following depen-

dency relationship between the rotation components 0_, 0z and derivatives of the transverse

displacements _, _:

(8)

where the commas denote differentiation. It is convenient to re-express equation (7) using

the following matrix/vector notation:

where

and

[u(=,u,z) = =(=) + A(u,z)0(=)[

u = v , _'= _" , 0 = O_

w @" O_

(9)

(10)

O: Oy O:

A = v -z 0 (11)

v y 0

Substituting equation (9) into equation (2) yields the beam total potential energy func-
tional:

1 _0L_'(u)TC'_(U ) -- ]L_lT_b-J-'ft) l (12)fiT(F) =

where the superposed tildes represent beam resultant quantities, defined as follows:

fi(z) = ,[_(z), O(z)} T = Resultant Displacement Vector (13)

_'(z,y,z) = A¢(y,z)_'(x) = Reduced Strain Vector

AE(y,z)

Resultant Stress Vector
P

_(z) = /AAeT(Y'Z)_(x'Y'Z)

c(_) = f AT(y,z)0(x,y,z)A,_(y,z)= Resultant Constitutive Matriz

1 y z 0

0 0 0 -z = Strain Partitioning Matriz

0 0 0 y

(14)

(15)

(16)

(17)



fb(z) = [ = = Resultant Body-Load Vector
da AT(y,z)fb(z,Y,Z) mb(x) =0

?t(x) = AT(yl,zt)ft(z,yl,zl) = mt(x )

(18)

Resultant Line-Load Vector

(19)

where yt, zt are the cross-section coordinates defining the surface of the beam upon which

line loads, ft, are applied.

The "hats" above the quantities, _, _ and C, in equations (14)-(16) denote enforcement of

beam assumption 1), namely:

o'_ = a_z = _r_z = 0 (20)

which enables reduction of the 3-D continuum stress and strain arrays appearing in equa-

tions (4)-(6) from 6 to 3, i.e.,

_(_,y, z) = 2e_(x,y,z)

2e_z(X,y,z)

and _(x, y, z) =

_r_(z,y,z)

_(_,y,Z)

_(_,y,Z)

(21)

such that the reduced linear-elastic constitutive matrix becomes:

ezz 2ezy 2ezz

E 0 0

0 G 0

0 0 G

_(_,y,z) = _

_rzz

(22)

where E and G are the elastic and shear modulii, respectively.
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Beam Resultant Strain Measures ('g)

The beam resultant strain measures emanate from equation (14), which in turn is ob-

tained by substituting the beam kinematic hypotheses (eq. (9)) into the continuum strain-

displacement relations (eq. 7)). This yields:

{ ,=(_,y,z) }
2_y(z,y,z) =
2e_(x,y,z)

1

0

0

z y 0

0 0 -z

0 0 y

Ae(y,-)

{_(_) }
_(_)
_(_)

• _(_)

_(_)

(23)

where the resultant strain measures are defined as follows:

= t% = bending strain due to 0y = -w,.z =
tcz bending strain due to Oz -v,**

a twisting strain 8,z

U z

_y,z }(24)

Beam Stress Resultants (if')

The beam stress resultants emanate from equation (15), which yields:

K = My bending moment about y
Mz = bending moment about z =

T torsional moment (about x)
°'" }O'zz Z

O'zz y

(_,_ y - _y z)

(25)

Beam Resultant Constitutive Matrix (C )

The beam resultant linear-elastic constitutive matrix relating K(x) and _'(x) emanates from

equation (16), which expands to:

I "_z toy t¢z

My ! f Ez fA Ez2 f Eyz

Ol

o)0

0

f_ a(y _ + _)

(26)

9



In particular, if the beam cross-section is homogeneous, then C becomes:

C =

-_ z I_ y I_ z

N_ ( EA EAe. EA% 0 )

My EAe, EIzz EI_z 0

Mz EA% EI_z EI_ 0
T 0 0 0 GJ

where the cross-section geometric properties are defined by:

A = /A -- Area

ey

fAY

A
-- Eccentricity in y Direction

e_
f A Z Eccentricity in z Direction

A

(27)

(28)

(29)

(30)

Iuu = fAY2 = Moment-of-Inertia about z Axis (31)

I** = /A z2 = Moment.of-Inertia about y Axis (32)

I_ = fAyz = Product-of-Inertia (33)

J = fA (y2 + z 2) = Polar Moment-of-Inertia
(34)

10



2.3 Discrete Equations

The finite element beam equations are obtained from equation (12) by introducing intra-

element approximations for the geometry and displacement field of the form:

x(z) = Na(z)x e (35a)

_(z) = Nv(z)d e (35b)

where

xe = x_ d_

are the expanded element nodal coordinate and nodal displacement vectors, respectively,

and z is now the beam-element axial coordinate which ranges from (0, Le), where Le is

the element length. With the above discrete approximations, to be defined in detail in

subsequent sections, the strain resultant vector becomes:

= B(z)d e

where B is the element strain-displacement matrix, defined by substituting the above ele-

ment displacement approximations (eq. (35b)) into the beam strain-displacement relations

(eq. (24)).

The discrete form of the variational functional (eq. (12)) becomes:

Nel

= (37)
e=]

where the script e denotes an individual element, Nel is the total number of elements, and

the element total potential energy may be expressed as:

II_ = ldeT2K7_'lde _ deTf_e,, (38)

In equation (38) K_ atlis the element material (or linear)stiffnessmatrix, and C _t isthe

clement external force vector,defined as follows:

(40)

where TEc is the block-diagonal transformation matrix relating the computational basis

at each element node to the element local Cartesian basis. Specific equation systems em-

anating from equations (37)-(38), and their generalizations, are described in the following

sections.

11



2.3.1 Linear Static Equations

The discrete equations for linear statics are obtained by taking the first variation of equa-

tion (37) and setting it equal to zero, i.e.,

K maud = fc_t (41)

where K matt and fe_t are the assembled versions of the element material stiffness and ex-

ternal force vector (eqs. (39) and (40)), and d is the system displacement vector, composed

of the union of all nodal displacement vectors.

2.3.2 Linear Dynamic Equations

For linear dynamics, an inertial term is added to the left-hand side of equation (41) - using

Hamilton's principle - resulting in:

M_i + K'_atld = f_'t (42)

where M is the structure mass matrix, assembled from the element mass matrices, Me,
which are defined in Section 2.11.

2.3.3 Linear Eigenproblems

For linear vibration analysis, the right-hand-side of equation (42) becomes zero and we

have the eigenproblem:

(Km_'z + _M) d_ = 0 (43)

where the eigenvalue, )_, is the natural frequency squared, and dx is the corresponding
vibration mode vector.

For linear stability, or buckling analysis, M in equation (43) is replaced with the geometric

stiffness matrix, i.e.,

(Km"_/ + )_Kge°ra(o'o)d_, = 0 (44)

where the eigenvalue, )_, is the load multiplier associated with the pre-buckling stress,

o_0; da is the corresponding buckling mode; and K ge°m is the geometric stiffness matrix,

defined at the element level (K_ e°'_) in Section 2.10.

2.3.4 Nonlinear Problems

See Section 2.12 for a description of ES6 element contributions to nonlinear equation

systems.

12



2.4 Element Topology

The topology of the E210 beam element is shown in Figure 2.

Oza

Figure 2. Topology of the E210 Beam Element

Each node possesses the 6 displacement degrees of freedom:

do : 0a (45)

where:

_. = g_ and O_ = O_a (46)

__ O_a

are the translation and rotation components at element node a, expressed in the fixed

element local x,y,z coordinate system (in which • is the projected straight-beam span

direction).

Each element also stores the 4 resultant stress and/or strain components defined in equa-

tions (24) and (25) at each of the two Gauss integration points illustrated in Figure 2, and
tabulated in Table 3.

13



Table 3. Gauss Integration Coordlnates/Weights for E210 Beam Element

Integ. Pt. (g)

1

2

Natural Coord.( _g )

-1/v'_

+1/ v/'3

Physical Coord.(zg )

2

2
/

Weight(wa )

2.5 Geometric Approximations

The element geometry, illustrated in Figure 2 and embodied in equation (35a), is ap-

proximated within the element by linearly interpolating the position vectors on the beam

reference axis from nodal values, i.e.,

2

= N2( )x (47)
a=l

where

x x (48)
NL(z) = 1-L-7 and NL(x)- Le

are the linear Lagrange interpolation functions, expressed in terms of the physical coordi-

nate x. Thus, the element reference axis is represented by a straight line, and a span-wise

assemblage of E210 beam elements results in a piecewise straight approximation of a gen-

erally curved beam.

The above expression may be recast in the matrix notation of equation (35a) as follows:

= Nc( )x ° (49)

where

No(z) = [NL(z)I3 NL(z)I3]

Note that the physical span coordinate, z, can be expressed in terms of the natural coor-

dinate _ - for purposes of numerical integration - by the relationship:

z(_) - (I+_)L_ (50)
2

where _ ranges from -1 to +1, as x ranges from 0 to L¢.

14



2.6 Displacement Approximations

The ES6/E210 beam element uses linear Lagrange interpolation for axial displacements

and torsional rotations, and cubic ttermite interpolation for transverse (bending) displace-

ments.

2.6.1 Axial and Torsional Displacement Field

In both the axial and torsional displacement fields, _(z) and #_(z), respectively, the interior

translations and rotations are linearly interpreted from corresponding nodal values, as

follows:

2

g(z) = _NL(x)ga (51)

2

= (52)
a..-_l

where the linear Lagrange shape functions and their derivatives (which will be used to

compute axial and torsional strains) are given in Table 4.

Table 4. E210 Beam-Element Axial Interpolation Fns.

Node 1

NL(x) = 1- L--_

1
N_=(z) - L,

( Linear Lagrange Polynomials )

Node 2

= f

15



2.6.2 Bending Displacement Field

The bending displacement field is approximated by interpolating the transverse transla-

tions, _(z) and _(x), from corresponding nodal translations and rotations, using cubic

Hermite interpolation functions. Specifically:

2

a---_l

where N-_(z) is the Herrnite interpolation function associated with the translations at

node a, and N_(z) is the Hermite interpolation function associated with the rotations at

node a. Note that the negative sign in equation (54) is due to the fact that the Hermite

polynomials, ._ff(z), are really associated with the slopes, _,,a or @,_a, which are related

to the engineering rotations by:

0 o v"° } (55)

Similarly, the interior rotations, O_(z) and 0_(z), are related to the interior slopes using:

0_ t [0

Thus, the interior rotations may be obtained simply by differentiating equations (53)-(54)

with respect to z. Note that while the interior rotations are dependent on the interior

translations using equation (56), the nodal rotations and translations are considered inde-

pendent variables.

The Hermite interpolation functions and their first and second derivatives (which will be

used to compute bending strains) are given in Table 5.

16



Table 5. E210 Beam-Element Bending Interpolation Functions

Node 1

( Cubic ttermite Polynomials )

Node 2

_(_) = 1-3(_) _+ 2(_) 3

/vH(z) = z(1 - _-.)_

--H
Nl,z(x ) ez z= -_(1- _)

--H _ (1 - 2_-)N,,,_(_) = -_

/_IH,zz(x) -- L.

NH(z) = 3(,_-) 2 -- 2(._-T)3

._(.) = ,_"L-T(ZT- 1)

--H z
N2,_(z ) = 6_-,(1 - _-T)

_(:_) = 3(_) _- 2(_..)

--H

N2,_(x ) = _-_(1 - 2Z_)_

_(_) = _(3_

17



2.6.3 Combined Displacement Field

The complete displacement field for the E210 beam element may be assembled from the

above axial, torsional and bending contributions (eqs. (51)-(54)) as follows:

_(_)
_(_)

o=(_)
Ov(_)
o=(_)

_(_)

2

a=|

_a

0

0

0

0

0

_a w---_ 0_ 0w 0z_

0 0 0 0 0

_(=) o o o _y(_)
o _(_) o -_y(_) o
o o N_(_) o o

--" ._o(=)o -Na,=(_) o o
--H

No,=(_) o o 0 ._=(_)
Y

_D

N. (_:)

"1
Va

Wa

Ova

Oza

(57)

where the Lagrange and Hermlte interpolation functions (N L and N H) are defined in
--D

Tables 4 and 5, respectively. The above matrix, Na, is used to construct the element

external force vector and consistent mass matrix. Its derivatives are used to approximate

the element strain field, as shown in the next section.

Finally note that equation (57) may be rewritten as:

_.(z) = lq D(z) d" (58)

_D _D

where Na represents a nodal block of N , i.e.,

18



2.7 Strain Approximations

The ES6/E210 beam-element strains are obtained within the interior of the element, at the

standard two Gauss integration points, by substituting the above displacement approxi-

mation (eq. (57)) into the beam strain-displacement relations (eq. (24)). This yields the

conventional element strain-displacement matrix, B(z), which is defined as follows:

= B( )d

dl = Ba(x) d_
= [B_(z) B2(z)] d_

a_---1

(60)

where each of the two nodal blocks is defined as:

_,, _',_ _'= 0 = 0 a 0_,_

Ba(z) = _ 0 - ,_ 0 0

--N0_ __H
t¢z -- ,x_ 0 0 a,zz
a 0 N L 0 0

(61)

The derivatives of the Lagrange and Hermite polynomials, NL(z) and NH(z), appearing

in equation (61) are given in Tables 4 and 5, respectively. Table 6 indicates how each strain

component varies along the beam element length.

Table 6. Strain Variation within ES6 Elements

Strain Element Type

Component

Axial _,

Bending t%

t¢z

Torsional :a_

E210 Beam Element

p0 (x) - constant

Pa (z) - linear

pa (z) - linear

po(z) - constant

The element strain-displacement matrix, B, appears in the definition of the element

internal-force vector and material-stiffness matrix, given in Sections 2.9 and 2.10, respec-

tively.

19



2.8 Stress Approximations

Since the E210 element within processor ES6 assumes the form of the displacement field,

and strains are computed by satisfaction of the strain-displacement relations, stresses are

therefore computed directly in terms of strains using the constitutive relations. For linear-

elastic analysis, this amounts to:

= (62)

where the location x typically corresponds to an element integration point (xa).

2.9 Force Vectors

All element force vectors are constructed using 2-point Gauss integration. This integration

rule is exact for geometrically linear analysis (with up to linearly varying section proper-

ties), but only approximate for geometrically nonlinear analysis. The reason for using this

"reduced" integration rule (instead of, for example, the 3-point rule) for nonlinear analysis

is that it improves solution accuracy without engendering any spurious modes.

2.9.1 Internal Force Vector

The element internal force vector is defined as:

_0 L
lint = B T
-e

2

,_ --_ wa BT(za)5"(zg
g----1

(63)

where Wa and xa are defined in Table 3, B is defined in equation (61), and _ is defined

in equation (62). Note that for linear analysis, the above definition is equivalent to fint =

K_ aa de.

2.9.2 External Force Vector

feeZt = f:ody + f_line

where the element body force vector is defined as:

f:ody
_0 L --T--b---- N O f

Le 2 (--T--b))~ 2 Wg ND(Xg )f (xg
g----I

(64)

(65)
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and the element line force vector is defined as:

_0 L
fline -- T --£-e = ND f

2
Le -- T --t

g=l

in which _l is defined in equation (57), fb in equation (18), and ft in equation (19).

(66)

2.10 Stiffness Matrices

of
The tangent stiffness matrix, defined as Ke --- o--_d_-,'is the sum of three contributions,

i.e.,

Ke = K_ aa + K_ _°m + gle °ad (67)

which are described in the following sections.

All element stiffness matrices are constructed using 2-point Gauss integration. This inte-

gration rule is exact for geometrically linear analysis (with up to linearly varying section

properties), but only approximate for geometrically nonlinear analysis. The reason for us-

ing this "reduced" integration rule (instead of, for example, the 3-point rule) for nonlinear

analysis, is that it improves solution accuracy without engendering any spurious modes.

2.10.1 Material Stiffness Matrix

The element material stiffness matrix is defined as:

L

K_a = fo BT _B

(Gs)2

,._ --_ Wg BT(xg)C(xg)S(xg
g----1

where wg and zg are defined in Table 3, B is defined in equation (61), and C is defined in

equation (26).

2.10.2 Geometric Stiffness Matrix

The element geometric stiffness matrix is defined as:

L

Kge°_" = fo N_ G T G

2

,._ "_ wa N=(xa)GT(xg)G(xg
g=l

(69)
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where w a and z a are defined in Table 3, N. is the axial-force stress resultant defined in

equation (24), and G is the displacement gradient interpolation matrix, defined as follows:

_,.(z) = G(z) d" (7o)

where
w

_,_ = v,. C_ ----

gl

= g_'"

2"
gl'

'[bz

g2

IO,"

g2

(71)

in which the nodal blocks of the displacement-derivative interpolation row-matrices, ga,
are defined as follows:

g_ = 0 Na,. 0 0 0 a,.

ga = 0 0 N_,, 0 0

where the shape functions appearing in equation (72) have been defined in Tables 4 and 5.

The above expression for the geometric stiffness matrix (eq. (69)) neglects terms involving

the moment stress resultants, M u and Mz, but the N_ term is typically dominant. More-

over, when the high-order corotational option is selected, the neglected terms are compen-

sated for by the higher-order stiffness matrix emanating from the corotational projection

operator (see Chapter 4 of the Generic Structural-Element Processor Manual (ref. 3) for

details).

2.10.3 Load Stiffness Matrix

The load stiffness matrix, defined as K l°'d of'"'
--e = -o---*d_.' has not yet been implemented for

elements within processor ES6.

2.11 Mass Matrices

All element mass matrices are constructed using 2-point Gauss numerical integration.

Note that this represents an extremely reduced form of numerical integration, since the

Hermitian-cubic polynomial representation of the transverse displacements, _ and _, gives
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rise to a 6th-order polynomial integrand for the massmatrix - and the 2-point Gauss
rule is exact only up to 3rd-order integrands. Nevertheless,the useof approximate mass
matrices (e.g., employing lower-orderdisplacementinterpolation than for the stiffnessma-
trix) is usually adequate,often more accuratefor obtaining vibration modes,and of course
economical.

2.11.1 Consistent Mass Matrix

The beam element consistent mass matrix emanates from the the kinetic energy, T, which

for a continuum may be expressed as:

1 Iv flTupdVT=-_ (73)

where fl is the the velocity vector, and p is the mass density.
kinematics:

u(x,y,z) = X(y,z)u(_)

where:

yields:

/n}u= , A= [I3

#
A], A=

Substitution of the beam

-y
--z 0

y 0

(74)

(75)

1 c (fA X udz

Finally, the beam-element mass matrix emerges by substituting the beam-element inter-

polation approximation for u(z), namely:

u(_) = _(_)d ° (77)

which gives for the beam-element kinetic energy:

1¢1TMc clc (78)Tc=_

from which the beam-element mass matrix is identified as:

Me
_0 L _T

-=- N D ZN D dx

2
"Le _T

g----1

(79)
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where the integrated inertia matrix, 1-(z), is defined as follows:

fA _T
Z = A (y,z)._(y,z)p(y,z)dA (80)

For homogeneous materials, 2" becomes:

u

---_wVoyo_:I p A

0_ sym.

".2- "....5..

v w

0 0

pA 0

pA

ez

0 pAe_ pAeu

-pAez 0 0

pA% 0 0

pJ 0 0

pIz -pI_z

(81)

where the cross-section properties, ev, and ez, A, Iv, Iz,/y,, and d were defined in equa-

tions (28)-(34).

2.11.2 Lumped (Diagonal) Mass Matrix

The E210 beam element diagonal mass matrix is defined as:

where each nodal block is defined as follows:

(82)
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NL_ pA

N pJ
(83)

where the shape functions N_ and __n are defined in Tables 4 and 5, respectively. Note

that this is just the diagonal part of the consistent mass matrix given in equation (79).
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2.12 Element Nonlinearity

For nonlinear problems, the discrete system of equations given in equation (42) generalizes

to (ignoring structural damping and higher-order inertial effects):

M_i + fi'_'(d) = fe_(d,_) (84)

where fi,_t and fe_t are now nonlinear vector operators. This equation system is then

Iinearized, yielding the following linear equation system to be solved at each iteration of a

nonlinear analysis:

M_t + K6d = fe_(d,) 0 - fi'_t(d) (85)

where d is the displacement vector connecting the current (reference) configuration to the

initial configuration,/_d is the iterative change in the displacement vector (to be computed),

and K is the tangent stiffness matrix at either the current configuration (for True-Newton

iteration) or some previous configuration (for Modified-Newton iteration).

The nonlinear ES6 element contributions to M, K, fe_ and fi,,_ have the same form as

the linear contributions, with the following exceptions:

1) The stress resultant array, _, which appears explicitly in both fi,_t and in K ge°m is

computed using the Green-Lagrange strain tensor E defined as follows:

l[0u (0u) 1E = _ b-_ + b-_ + _0x/ 0xJ

where X are the coordinates in the undeformed configuration. To simplify the

formulation, the nonlinear terms in u are added only to the beam azial strain, _'_.

Thus, in geometrically nonlinear analysis, the linear axial strain, _x = O-_/OX, is

replaced with the following definition:

where

-NL (87)_x _-- -_ + %

_- _(g_x+V_ _- ,x + ,=) (88)

where X denotes the undeformed axial coordinate in the initial element Cartesian

frame, and u,v,w are the total displacements expressed in this same initial basis.

The displacement derivatives are computed using:

_,x = _ g:'X da
a'=l

2

_,_ = _ g:,xda (891

2

w,x = Eg: 'x da
a-----1
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where the gradient interpolation matrices, ga, were defined in equation (72). Once

gNL has been added to the linear strains, as in equation (87), the stress resultants

can then be computed from the total strains in the same way as during geometrically

linear analysis; e.g., for linear-elastic materials:

_- _" (90)

When the strain-displacement relations become nonlinear, the B matrix appearing
in the element internal force and material stiffness arrays, f__'_t and K_ aa, also has

to be modified. For nonlinear analysis, the B matrix represents an incremental

relation between interior strains and nodal displacements, i.e.,

gg(_,_/) = B(_,7?;_)gd e (91)

where

_a

6-_ (92)
6d_ = 60xa

60ya

50z_

are the nodal displacement increments at node a, and _ is the total displacement

vector in the interior of the element. As in the case of total strain calculation,

the nonlinear contributions to the incremental strains are added only to the axial

component. Thus we replace the linear axial strain increment as follows:

6gx +--- 6gx + 8-gg L (93)

where

_-_L = _,x_,x + _,x_,x + _,x6_,x (94)

Substituting the displacement approximations into the above equation leads to the

corresponding nonlinear contribution to the B matrix; that is, we replace:

B _x ,---- B _x + B 7x_L (95)

where

_.N L

B_ x (_,7/) =

Ua _a Wa Oxa Oya Oza

6_x ( _,x NLx --H_,xN_,,x _,X"ff_,Hx 0 --_,x-NHx _,X!VHX ) (96)
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8)

4)

4)

--H
in which N L and (Na,/_H) are the Lagrange and Hermite interpolation functions

defined in Tables 4 and 5. Note that the row of the nonlinear B matrix correspond-

ing to gx now couples all of the element nodal freedoms except for the torsional

rotations, 0_a , whereas the linear counterpart involves only the axial displacements,

Ua.

All of the element integrals, e.g., for stiffness matrices and force vectors, are carried

out over the initial (undeformed) element domain. The effect of large rotations is

accounted for using -_NL and B rxNL, defined above.

For very large rotations, the corotational facility built-in to the generic element

processor shell (ES) may be used. In this case the bulk rigid body motion of each
element is first "subtracted" from the overall motion before computing Ke, fe m,

and _(_'). The main effect of this adjustment is to increase the accuracy of the

nonlinear strain-displacement relations (eq. (97)), since the nonlinear terms in the

Green-Lagrange strain tensor, i.e., gxNL, become small after the element's rigid body

motion has been subtracted, and the accuracy continues to increase as the beam-

element mesh is refined. In fact, with the corotational option on, it is even possible

to solve nonlinear problems without using any other element nonlinearity (albeit

with a lower order of accuracy). See reference 2 for details.

ee** is a nonlinear function of the displacementThe element external force vector, -e ,

vector, de, only if live (e.g., hydrostatic) loads are present. For displacement-

independent (i.e., dead) loads, the external force vector is usually expressible as:

_ezf

fe_, = Af (97)

_e_t

where f is a fixed base load vector, and )_ is the current load factor. In this

case, equation (85) is evaluated only once (initially), and scaled by A as the analysis

progresses.

2.13 Modifications to Include Transverse-Shear Deformation

An expedient option exists to include transverse-shear deformations in the basic ES6/E210

beam-element formulation - for linear analysis only. This option captures the effect of

linear Timoshenko beamtheory, by augmenting the strain-displacement matrix, B, and
the constitutive matrix, (3, by two new rows.

Hence, each 4 × 6 nodal block of the B matrix is replaced by a 6 x 6 nodal block, as

follows:

[Ba _-- B*] (98)
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where

B:=

_y

_z

o_

N L 0 0 0 0 0

--H N ff,,zz 00 0 -Na)_ 0

--H __aHz z0 -N_,,_ 0 0 0
0 0 0 N L 0 0

0 0 0 0 (-i)" 0
L,

0 0 0 0 0 kz!)2.
L,

(99)

* and * denote constant curvature corrections to the basic curvatures,The new rows for n v _;z

n v and n_ - to account for transverse-shear deformation. Thus, equation (99) yields:

Oy 2 -- Oy 1

Le

_z2 -- Ozl

Le

(100)

where Ov,_ and O_,_ are the nodal rotations.

Correspondingly, the 4 x 4 resultant constitutive matrix, (3, is replaced by a 6 x 6 matrix,
as follows:

where:

_ M_

C -
- T

M:

-_z tgy t_z CX I_y _z

/ EA EAe_ EAe v 0 0 0 h

EAe. _ EIv_ 0 0 0
1+4,

EAe v EIv. _ 0 0 0

0 0 0 GJ 0 0

0 0 0 0 _ 0
1+¢,

0 0 0 0 0
1+¢_ j

(102)

in which:

ey
Ga3,AL2,

(103)

12EI.z
¢z -

GazAL_

where av and (x. are transverse-shear correction factors for bending in the x - y and z - z

planes, respectively.
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The transverse-shear option is activated by setting a_ or a_ to a number between 0 and 1_

e.g., 5/6 to match Reissner_s theory. If these parameters are both set to 0: the transverse-

shear option is bypassed.*

* Note: Currently, the transverse-shear option has not been activated in the CSM Testbed. A

modification to the element cover routines for processor ES6 is required in order to convey

these parameters to the E210 element kernel routines.
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